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Abstract We consider a nonlinear hyperbolic system of two conservation laws which

arises in ideal magnetohydrodynamics and includes second-order terms accounting for mag-

netic resistivity and Hall effect. We show that the initial value problem for this model may

lead to solutions exhibiting complex wave structures, including undercompressive nonclas-

sical shock waves. We investigate numerically the subtle competition that takes place be-

tween the hyperbolic, diffusive, and dispersive parts of the system. Following Abeyratne,

Knowles, LeFloch, and Truskinovsky, who studied similar questions arising in fluid and

solid flows, we determine the associated kinetic function which characterizes the dynamics

of undercompressive shocks driven by resistivity and Hall effect. To this end, we design

a new class of “schemes with controled dissipation”, following recent work by LeFloch

and Mohammadian. It is now recognized that the equivalent equation associated with a

scheme provides a guideline to design schemes that capture physically relevant, nonclassical

shocks. We propose a new class of schemes based on high-order entropy conservative, finite

differences for the hyperbolic flux, and high-order central differences for the resistivity and

Hall terms. These schemes are tested for several regimes of (co-planar or not) initial data

and parameter values, and allow us to analyze the properties of nonclassical shocks and

establish the existence of monotone kinetic functions in magnetohydrodynamics.

Key words hyperbolic conservation law; magnetohydrodynamics; magnetic resistivity;

Hall effect; undercompressive shock; kinetic function

2000 MR Subject Classification 35L65; 74S10; 65M12

∗Received October 31, 2009. The first author (PLF) was partially supported by the Centre National de la

Recherche Scientifique (CNRS) and the Agence Nationale de la Recherche (ANR).



No.6 P.G. LeFloch & S. Mishra: KINETIC FUNCTIONS IN MAGNETOHYDRODYNAMICS 1685

1 Introduction

Many problems in the physical, biological and engineering sciences are modeled by nonlin-

ear hyperbolic systems of conservation laws, augmented with second- or higher-order regular-

ization terms. In one space dimension, these partial differential equations take the form

ut + f(u)x = 0, (1.1)

where u is the vector-valued unknown and the flux f = f(u) is a prescribed, smooth vector-

valued map. The above equation has to be supplemented with suitable initial data. The system

(1.1) is said to be strictly hyperbolic provided the eigenvalues of the flux Jacobian ∇uf are real

and distinct.

It is well known that solutions to (1.1) develop propagating discontinuities (shock waves,

contact discontinuities) in finite time, even from smooth initial data; hence, solutions of (1.1) are

considered in the weak sense. On the other hand, weak solutions are not uniquely determined

by their initial data, in general, and suitable admissibility criteria need be imposed in order

to recover uniqueness for the initial value problem. These admissibility criteria are termed as

“entropy conditions”.

One natural requirement is based on a convex entropy function U = U(u) and entropy

flux F = F (u) which, by definition, must satisfy the compatibility condition ∇uU ∇uf = ∇uF .

Such an entropy pair exists for most models of physical interest, and one then imposes that

physically-meaningful weak solutions to (1.1) also satisfy the entropy inequality

U(u)t + F (u)x ≤ 0 (1.2)

in the distributional sense.

Another related strategy consists of imposing pointwise conditions at shocks. For systems

with genuinely non-linear characteristic fields, the natural conditions are Lax entropy inequal-

ities [21, 22] and, for more general systems, the Liu entropy condition [32]. These conditions

imply, in particular, a restriction on the number of characteristics that impinge on a shock from

both sides. Shocks with the correct number of characteristics impinging on them are termed as

classical or Lax shocks.

Following LeFloch [24–26], we are interested here in the case that weak solutions are

generated by adding high-order regularization terms in the right-hand side of (1.1).

Recall first that for scalar conservation laws, any function U is associated with an entropy

flux F , and by imposing all such inequalities (1.2) one ensures the uniqueness of entropy solu-

tions to the Cauchy problem. Most system admits however a single entropy pair and, hence,

the weak solutions are solely constrained by one entropy inequality. Moreover, a single entropy

inequality is not sufficient to ensure uniqueness, whenever the flux does not satisfy a convexity

or genuine nonlinearity condition.

Recall also that shocks with either greater or lesser number of characteristics impinging

on them are termed as nonclassical, and are referred to as being overcompressive or undercom-

pressive, respectively.

Then, motivated by physical applications, let us for instance consider the class of entropy
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solutions to (1.1) generated by diffusive-dispersive regularizations in the generic form:

uε
t + f(uε)x = ε (B(uε)uε

x)x + κ ε2
(
C(uε)uε

xx

)
x
, (1.3)

for some constants ε > 0 and κ ∈ R and some matrix-valued maps B, C. One typical require-

ment on the dissipation matrix B is that is is non-negative with respect to the scalar product

induced by the entropy U , that is,

∇2U B ≥ 0.

Under some further restriction on C (see [25]), one formally deduces that the entropy inequality

(1.2) does hold in the limit ε → 0. It turns out however that (1.2) does not provide sufficient

information on the effect of diffusive-dispersive small-scales, and does not lead to a well-posed

problem for the system of conservation laws (1.1).

The nature of waves associated to a specific regularization such as (1.3) is conveniently

exhibited by solving the Riemann problem associated with (1.1), corresponding to the piecewise

constant initial data

u(x, 0) =

⎧⎨
⎩

ul, x < 0,

ur, x > 0,
(1.4)

for given constant states ul, ur. For instance, recall that the Riemann problem associated with a

strictly hyperbolic system with genuinely non-linear (or linearly degenerate) characteristic fields

can be uniquely solved by a combination of Lax shocks, contact discontinuities, and centered

rarefaction waves.

An illustrative example for the presence of non-classical shocks is provided by the scalar

conservation law, with a cubic flux function:

ut + (u3)x = 0. (1.5)

The above flux is non-convex and thus is neither genuinely non-linear nor linearly degenerate.

Diffusive-dispersive regularizations [16, 19, 25] do lead to nonclassical shocks for (1.5). These

shocks do not satisfy the classical Oleinik entropy inequalities for scalar conservation laws.

Furthermore they arise as limits of the diffusive-dispersive regularization:

uε
t + ((uε)3)x = εuε

xx + κε2uε
xxx. (1.6)

On the other hand, taking κ = 0 in (1.6) results in a diffusive approximation, for which all

limiting solutions are classical and satisfy the Oleinik entropy conditions.

In fact, nonclassical shocks do exist for solutions of many interesting problems, for instance

in the dynamics of phase transitions in material science [1, 2, 23, 36, 37, 42, 43], in thin film

flows [4, 5, 30, 31], and in flows in porous media [3, 20] among other applications. These shocks

are the limits of models including second- or higher-order regularization terms and, hence, are

physically relevant.

Nonclassical shocks satisfy a single entropy inequality of the form (1.2) but may not be

unique and additional conditions need to be imposed in order to select a unique nonclassical

shock solution. Such conditions are expressed in terms of kinetic relations, which relate the

entropy dissipation at a shock in terms of the shock speed. These kinetic relations are often

monotone functions and lead to uniqueness results of solutions containing nonclassical shocks.



No.6 P.G. LeFloch & S. Mishra: KINETIC FUNCTIONS IN MAGNETOHYDRODYNAMICS 1687

In the absence of explicit formulas, numerical methods are heavily used in the study of

conservation laws (1.1). Many standard methods [33] are based on the finite volume method-

ology and rely on discretizing the domain into cells and updating the cell averages of the

unknown. The update is determined by constructing suitable Godunov-type numerical fluxes.

These schemes are very successful in approximating classical shocks.

It is much more difficult to approximate nonclassical shocks. As an example, consider the

cubic scalar conservation law (1.5). It is not difficult to check that a standard Godunov-type

monotone scheme always approaches classical shocks (satisfying the Oleinik entropy conditions)

to (1.5). Standard methods need to be adapted in order to approximate nonclassical shocks.

The numerical approximation of nonclassical shocks has been investigated in various works

[8, 9, 16, 24, 27, 28] where schemes with controled dissipation are developed, as they are called

in [26]. The recent paper by LeFloch and Mohammadian [28] provides a detailed review of the

state of the art and demonstrate the key role played by the equivalent equation associated with

the scheme under consideration. The main requirement for a scheme with controled dissipation

is that the equivalent equation should be an approximate version of the diffusive-dispersive

regularization (1.3), after the diffusion and dispersion terms in (1.3) be approximated directly

by high-order finite differences (for instance). Note that this is a key difference from standard

shock-capturing schemes, in which the diffusion and dispersion terms are implicit introduced

and depend on the algebraic structure of the discretization of the hyperbolic flux. The equivalent

equation is essential in introducing the small scale information needed for capturing nonclassical

shocks. Another crucial role is played by the entropy conservative numerical flux developed in

[27, 29, 38, 39]. The resulting schemes satisfy discrete versions of the entropy inequality (1.2)

and were initially introduced by Tadmor [38], then extended to third-order by LeFloch et al.

[17, 19] and, finally, investigated under more general circumstances [8, 9, 27, 39].

LeFloch and Mohammadian [28] demonstrated the significance of the equivalent equation

for schemes that approximate nonclassical shocks. A key point of the study was to numeri-

cally determine kinetic functions associated with schemes. These approximations of the kinetic

relation serve to quantify the ability of a scheme for computing nonclassical shocks. It is

demonstrated in [28] that increasing the order of accuracy of the discretization led to a better

approximation of the kinetic relation.

This general presentation leads us precisely to our main objective of the present paper,

i.e., extending the above technique to a model of magnetohydrodynamics. We consider a non-

strictly hyperbolic system of two conservation laws (discussed extensively in Section 2) arising

in ideal magnetohydrodynamics (MHD) when magnetic resistivity and Hall effect terms are

included. First of all, we establish here that certain solutions of this model do contain nonclas-

sical shocks. Following [28], we then design a class of high-order, entropy conservative, finite

difference schemes for this model, and we apply them to study the properties of the associated

nonclassical shocks. Different regimes are studied and reveal the presence of a regime, where

nonclassical shocks are formed. Numerical kinetic functions are computed, and we establish

that they support the theory developed in [18], which however assumed strict hyperbolicity.

Our results further validate LeFloch and Mohammadian’s strategy [28] and demonstrate that

proper discretization of the equivalent equation can be combined with entropy conservative flux

discretizations, leading to a robust and accurate dissipation-controled method for the approxi-
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mation of nonclassical shocks;

This paper is organized as follows. The MHD model of interest is described in Section 2

and then, in Section 3, we introduce a class of high-order schemes, including up to 10-th order

of accuracy. Our numerical results are presented in Section 4, and numerical kinetic relations

are plotted. Finally, the conclusions of this paper are summarized in Section 5.

2 Magnetohydrodynamics Model with Rresistivity and Hall Terms

The equations of ideal magnetohydrodynamics (MHD) form a physically important exam-

ple of a system of conservation laws that is not strictly hyperbolic (coinciding eigenvalues of the

flux Jacobian) and in addition, is not genuinely non-linear nor linearly degenerate [35]. These

equations model the evolution of plasmas and occur in astrophysics, solar physics, electrical

and aerospace engineering. In one space dimension, the equations read

ρt + (ρu1)x = 0,

(ρu1)t +
(
ρu2

1 + p +
B2

2 + B2
3 − B2

1

2

)
x

= 0,

(ρu2)t + (ρu1u2 − B1B2)x = 0,

(ρu3)t + (ρu1u3 − B1B3)x = 0, (2.1)

(B2)t + (u1B2 − u2B1)x = 0,

(B3)t + (u1B3 − u3B1)x = 0,

Et +
((

E + p +
|B|2

2

)
u1 − (u · B)B1

)
x

= 0,

where ρ is the density, u = (u1, u2, u3) and B = (B1, B2, B3) are the velocity and magnetic

fields, respectively, p is the thermal pressure, and E is the total energy. For simplicity, we

assume here that E is determined by the equation of state of ideal gases:

E =
p

γ − 1
+

1

2
ρ |u|2 +

1

2
B2, (2.2)

where γ is the gas constant. Note that the divergence constraint for MHD equations [6] in one

space dimension implies that the normal magnetic field B1 is a constant in both space and time

and appears in (2.1) as a parameter.

Due to the lack of strict hyperbolicity and non-convex, the solutions of the Riemann

problem for the ideal MHD equation exhibit very complex wave structures, including compound

wave patterns and both undercompressive and overcompressive intermediate shocks. In turn,

there is no uniqueness for solutions to the Riemann problem for ideal MHD equations. See [40]

for further details.

So far, there has been no systematic study of the properties of nonclassical shocks for

the ideal MHD equations. In particular, the existence of associated kinetic relations is yet to

be investigated. The existence of kinetic relations might pave the way for obtaining unique

solutions for the Riemann problem associated with the ideal MHD equations. The main reason

for the lack of such results is the formidable difficulty in dealing with a complicated 7 × 7

system. Consequently, simpler models mimicking some of the difficulties present in the ideal

MHD equations have been proposed and studied.
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One sub-model for ideal magnetohydrodynamics is provided by the following 2× 2 system

([13–15, 18]):

vt + ((v2 + w2)v)x = 0,

wt + ((v2 + w2)w)x = 0.
(2.3)

A systematic derivation of this system from the ideal MHD equations (2.1) is described in [34].

The vector (v, w) represents the transverse components of the magnetic field in the ideal MHD

equations (2.1). The model also arises independently in studying the solar wind [10, 44] and in

non-linear elasticity [7].

The system (2.3) is rotationally invariant,and smooth solutions of (2.3) can be parameter-

ized in radial coordinates:

v = r cos(θ), w = r sin(θ), r ≥ 0, θ ∈ [0, 2π), (2.4)

so that (2.3) takes the form

rt + 3r2rx = 0,

θt + r2θx = 0.
(2.5)

The two eigenvalues of (2.3) are λ1 := r2 and λ2 := 3r2. Hence, the system is strictly hyperbolic

except at the umbilic point r = 0. The characteristic field associated with λ2 = 3r2 is the fast

mode of the system and fails to be genuinely non-linear. On the other hand, the slow or

rotational mode is given by λ1 = r2. It is linearly degenerate as the mode is independent of θ.

The model (2.3) is neither strictly hyperbolic nor genuinely non-linear and mimics the

structure of ideal MHD equation (2.1). There are two main wave families for (2.3) (cf. [13,

18]):

• Rotational discontinuities. These waves are associated with the slow (or rotational)

mode; the radius r is constant and the angle θ varies across these waves.

• Fast waves. These waves keep the angle θ constant and are associated with the fast

mode; the radius r varies across these waves.

One aim is to construct solutions to the Riemann problem associated with (2.3) in terms of the

above wave families. However, this is not possible ([13, 18]) when the data are coplanar, i.e.,

when w = cv, for some constant c. In this case, (2.3) reduces formally to the following scalar

conservation law with cubic flux:

vt + (1 + c2)(v3)x = 0. (2.6)

As recalled in the introduction, solutions to (2.6) may contain nonclassical shocks. In the

present paper, we go beyond the standard diffusive-dispersive regularization, and consider the

following regularization of (2.3):

vε
t + (((vε)2 + (wε)2)vε)x = εvε

xx + αεwε
xx,

wε
t + (((vε)2 + (wε)2)wε)x = εwε

xx − αεvε
xx

(2.7)

for some positive constants ε, α. The diffusive term εvε
xx, εwε

xx models magnetic resistivity while

the dispersive ones αεvε
xx, αεwε

xx models the Hall effect [44]. As observed by Hayes and LeFloch

[18], nonclassical shocks to (2.3) do arise as limits of (2.7).
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The system (2.3) admits an entropy function associated with the total energy

U(v, w) :=
1

2
(v2 + w2), F (v, w) =

3

4
((v2 + w2)2). (2.8)

which is compatible with the regularization (2.7). Weak solutions to (2.3) realized as limits of

(2.7) then satisfy the entropy inequality

U(v, w)t + F (v, w)x ≤ 0 (2.9)

in the distributional sense. The properties of nonclassical shocks to (2.3) is summarized in the

following theorem established in [18].

Theorem 2.1 Consider the Riemann problem for (2.3) with Riemann data (vl, wl) and

(vr, wr). For non co-planar data, there exists a unique solution of the Riemann problem sat-

isfying (2.9), which consists of a rotational discontinuity plus a fast shock or a rarefaction

wave.

If the data are co-planar and the angles associated with initial data satisfy θr = θl(mod. π),

then the Riemann problem for (2.3) has a unique solution consisting of either a classical shock

or a rarefaction wave.

If the data are co-planar and θr = π + θl(mod. π), then the Riemann problem for (2.3)

admits a one-parameter family of entropy solutions containing a nonclassical shock connecting

(vl, wl) with an intermediate state (vm, wm), followed by a fast shock or a rarefaction. The

nonclassical shocks are characterized uniquely via a kinetic relation of the form:

ϕ(s) = −s
1

2
[[v2 + w2]] +

3

4
[[(v2 + w2)2]], (2.10)

where [[a]] denotes the jump of a variable a and s denotes the shock speed, and ϕ satisfies the

inequalities
∂ϕ(s)

∂s
≥ 0, −

3

4
≤

ϕ(s)

s2
≤ 0. (2.11)

The kinetic function (2.10) expresses the entropy dissipation as a monotone function of

the shock speed. In [18], the authors also proved that the solutions of the diffusive-dispersive

regularatization (2.7) converge to weak solutions to (2.3), by using the compensated compact-

ness method. Thus, nonclassical shocks arise as limits of the diffusive-dispersive regularization

(2.7), and our aim in this paper is to study numerically the property of nonclassical shocks, by

using finite difference schemes well-adapted to the approximation of the system (2.3).

3 A Class of Difference Schemes with Controlled Dissipation

Preliminaries For simplicity, we consider a uniform discretization of the computational

domain, with mesh size Δx and i-th mesh point xi := iΔx. We discretize (2.7) directly, and

more precisely

ut + f(u)x = D uxx, (3.1)

where u := (v, w) and

f(u) :=
(
(v2 + w2)v, (v2 + w2)w

)
, D =

⎛
⎝ ε(Δx) αε(Δx)

−αε(Δx) ε(Δx)

⎞
⎠ .
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The diffusion ε and the Hall coefficient αε depend explicitly on the mesh parameter Δx.

By denoting by ui(t) an approximation of u(xi, t) at time t, a conservative semi-discrete

finite difference scheme for (3.1) takes the form (cf. for instance [33]):

d

dt
ui +

1

Δx
(fd

i+1/2 − fd
i−1/2) =

1

Δx2
Rd

i . (3.2)

where fd
i+1/2

is a discretization consistent with the exact hyperbolic flux and with spatial order

of accuracy, and Rd
i denotes the discretization of the diffusion-dispersion terms. We have

dropped the explicit t-dependence of all the quantities for notational convenience.

Standard finite difference flux The first numerical flux we use is the standard cen-

tered finite difference flux:

f
2p
i+1/2

=

p∑
j=1

βjf(ui, ui+p), (3.3)

where d = 2p is the order of the discretization and the flux f is given by the average:

f(ul, ur) :=
1

2

(
f(ul) + f(ur)

)
, (3.4)

The coefficients β in (3.3) are determined from the requirement that the discretization is 2p-th

order accurate. The coefficients for discretizations up to 10-th order of accuracy are listed in

Table 1. The resulting scheme may not satisfy a discrete version of the entropy inequality (2.9).

Table 1 Coefficients β in (3.3)

Order 2p β1 β2 β3 β4 β5

2 1

4
4

3
−

1

6

6
3

2
−

3

10

1

30

8
8

5
−

2

5

8

105
−

1

140

10
5

3
−

10

21

5

42
−

5

207

1

630

Entropy conservative flux discretization Since the entropy inequality plays a role

in the structure of the nonclassical shocks (see Theorem 2.1), it is more natural to rely on a

scheme that satisfies a discrete entropy inequality. The starting point for designing an entropy

stable scheme is the construction of an entropy conservative discretization of the flux f in (3.1).

We use the terminology given by Tadmor [38] and the high-order schemes proposed by LeFloch

et al. [27].

Consider (3.1) with the entropy function E and entropy flux Q given in (2.8) and define

S := ∇uU, ψ := 〈S, f〉 − F.

The vector S is called the entropy variable, while ψ is termed the entropy potential [38]. For

the system (2.3), these quantities are explicitly calculated as

S = (v, w), ψ = −
1

2
(v2 + w2)2. (3.5)
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A 2p-th order accurate entropy conservative numerical flux for (2.3) was proposed in [27]:

f
2p
i+1/2

=

p∑
j=1

βj f̃(ui, ui+p), (3.6)

with coefficients β listed in Table 1. The numerical flux f̃ is any two point numerical flux

function [38]:

〈(Sr − Sl), f̃(ul, ur)〉 = ψr − ψl, (3.7)

where ul, ur are any two states. For further results in the consistency and accuracy of the

numerical fluxes (3.6), we refer to [39]. Finally, following [12], we deduce the following explicit

formula for the entropy conservative flux:

f̃(ul, ur) =
(
f̃1(ul, ur), f̃2(ul, ur)

)
,

f̃1(ul, ur) :=
(v2

l + v2
r

2
+

w2
l + w2

r

2

) vl + vr

2
, (3.8)

f̃2(ul, ur) :=
(v2

l + v2
r

2
+

w2
l + w2

r

2

) wl + wr

2
,

which is clearly consistent with f in (3.1). Note that the entropy conservative flux is different

from the centered flux (3.4).

Discretization of the diffusive-dispersive term We use standard central finite dif-

ferences of the appropriate order to discretize the diffusive-dispersive term in (3.2). Discretiza-

tion of up to tenth-order of accuracy take the form:

• Second-order:

R2
i = ui+1 − 2ui + ui−1.

• Fourth-order:

R4
i = −

1

12
ui−2 +

4

3
ui−1 −

5

2
ui +

4

3
ui+1 −

1

12
ui+2.

• Sixth-order:

R6
i =

1

90
ui−3 −

3

20
ui−2 +

3

2
ui−1 +

49

18
ui +

3

2
ui+1 −

3

20
ui+2 +

1

90
ui+3.

• Eighth-order:

R8
i = −

1

560
ui−4 +

8

315
ui−3 −

1

5
ui−2 +

8

5
ui−1 −

205

72
ui

+
8

5
ui+1 −

1

5
ui+2 +

8

315
ui+3 −

1

560
ui+4.

• Tenth-order:

R10
i =

1

3150
ui−5 −

5

1008
ui−4 +

5

126
ui−3 −

5

21
ui−2 +

5

3
ui−1 −

5269

1800
ui

+
5

3
ui+1 −

5

21
ui+2 +

5

216
ui+3 −

5

1008
ui+4 +

1

3150
ui+5.

Combining the entropy conservative fluxes (3.6), (3.8) with central discretizations of the

diffusive-dispersive term is expected to ensure that the scheme (3.2) satisfies a discrete version

of the entropy inequality (2.9); for details see [8, 9, 27, 29]. The time integration for the semi-

discrete scheme (3.2) is performed by using a standard Runge-Kutta time stepping routine of

the appropriate order.
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4 Existence of Nonclassical Shocks and Kinetic Functions

Preliminaries For the sake of reference, we denote the schemes introduced the previous

section as follows:

• FDd. The scheme (3.2) with the average flux (3.4), the finite differences (3.3) and a

finite difference discretization of the diffusive-dispersive term. All the differences are of order

d.

• ECd. The same scheme as above but with the entropy conservative fluxes (3.8) replacing

the averages (3.4).

In the following numerical experiments, we use d = 2, 4, 6, 8, 10 and all the schemes are inte-

grated in time with a standard fourth-order Runge Kutta method. The time step is determined

by a CFL condition and we use a CFL number of 0.45 for all simulations. Moreover, the three

free parameters in (3.2) are the mesh size Δx, the diffusion coefficient ε, and the Hall coefficient

α. We are going to test for various values of these parameters in the sequel.

Theorem 2.1 and various numerical experiments revealed the existence of the following

three regimes.

Classical regime Theorem 2.1 states that solutions of Riemann problems for (2.3) with

non co-planar data contains only classical shock waves and rotational discontinuities. We test

this proposition with the following numerical experiment.

Numerical Test 1 The MHD system (3.1) is considered with the initial data:

r(x, 0) =

⎧⎨
⎩

2.0, x < 0.25,

1.2, otherwise,
θ(x, 0) =

⎧⎪⎨
⎪⎩

π

3
, x < 0.25,

11π

24
, otherwise.

(4.1)

The computational domain is taken to be the interval [0, 2], and the exact solution (see [18])

consists of a rotational discontinuity and a fast shock. All the schemes led to very similar results

in this case, and we present results obtained with the EC6 scheme in Figure 1. The state v,

the radius and angle are plotted, the mesh size is Δx = 0.005, and we treat two different values

of the coefficients ε and α. In all the cases, the EC6 scheme approximates the solution quite

well. The radius remains constant across the rotational discontinuity and the angle is constant

across the shock, as expected.

Reducing the value of ε from ε = 2 to ε = 0.5 results in some oscillations. However, the

waves are resolved more sharply in this case. Changing the value of the Hall coefficient from

α = 0 to α = 2 did not alter the qualitative features of the solution. There were some dispersive

oscillations around the shock wave in the regime of high dispersion.

Other numerical experiments in the classical regime of non co-planar data demonstrated

very similar results.

Pseudo nonclassical regime Theorem 2.1 indicates that the classical regime should

consist of all states that are non co-planar. However, numerical experiments revealed an inter-

esting “pseudo nonclassical” regime of initial states. By definition, in this regime, the difference

in initial angle between the states is close to π. The resulting anomaly is illustrated in the fol-

lowing numerical experiment.
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(a) ε = 2Δx, α = 0 (b) ε = 2Δx, α = 2.0
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(c) ε = 5Δx, α = 0 (d) ε = 2Δx, α = 2.0

Fig.1 Test 1 with 400 mesh points at time t = 1. The plot shows the computed radius, angle, and

variable v. Note that there are two waves in v but only one in the radius and the angle.

Numerical Test 2 We consider (2.3) with the initial data

r(x, 0) =

⎧⎨
⎩

2.0, x < 0.25,

1.2, otherwise,
θ(x, 0) =

⎧⎪⎨
⎪⎩

π

3
, x < 0.25,

29π

24
, otherwise.

(4.2)

Note that now θr − θl = 7π
8

and the data is still non co-planar. However θr − θl ≈ π. By

Theorem 2.1, the exact solution consists of a rotational discontinuity and a fast shock. We

tested with all the schemes and different sets of parameters, and again all the schemes led to

very similar, but somewhat unexpected, results. For definiteness, in Figure 2. we present the

plot for the scheme EC6.

We chose different sets of parameters. First, the mesh size is Δx = 0.005 (400 mesh points),

the diffusion coefficient ε = 2Δx and the Hall coefficient α is set to zero. The results show that

the radius is not constant across the rotational discontinuity. In fact, a middle wave is formed

and the radius decreases across this wave. Characteristic analysis shows that this wave is an

overcompressive nonclassical shock. This behavior apparently the conclusions of Theorem 2.1,

but actually is a spurious numerical artifact.

The dispersive case (α = 2.0) shows similar behavior. The middle wave is trailed by a

overshoot, and reducing the diffusion coefficient to ε = 0.5Δx results in a much smaller middle

wave. Increasing the mesh resolution by an order of magnitude (4000 mesh points) also results

in reducing the amplitude of the middle wave. These two observations imply that the middle

wave will disappear in the limit either by taking the mesh size to zero or by letting ε to go to

zero. Hence, the middle wave is a entirely numerical.

The appearance of the middle wave leads to very slow convergence for the schemes. This

is demonstrated in Figure 3 where we plot the results with the scheme EC6 for a mesh of 20000
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points. The middle wave is still evident and there is a overshoot in the angle at the rotational

discontinuity. Thus, the spurious nonclassical shock slows the convergence considerably. This

phenomenon was also observed in [15] in a different context that did not take into account the

Hall effect and relies on a particular finite volume scheme.
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(c) ε = 0.5Δx, α = 0, 400 points (d) ε = 2Δx, α = 0, 4000 points

Fig.2 Test 2 at time t = 1. The plots show the radius, angle and the unknown v. Note the spurious

middle wave characterized by a jump in the radius and the angle.
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Fig.3 Test 2 with 20000 points. The radius, angle and v are plotted.

Our results show that this behavior is independent of the approximation scheme. Further-

more, it persists even in the presence of dispersion generated by the Hall terms. Interestingly

enough, a similar pseudo-convergence was also pointed out by Torilhon in computations with

the full MHD equations [40, 41]. We note that the simplified model studied in the present paper

allows us to more clearly identify this phenomena.

Nonclassical regime The most interesting behavior is observed with coplanar initial
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data. Indeed, Theorem 2.1 suggests that the solutions to (2.3) contain nonclassical shock

waves when the data are co-planar and the difference in the initial angles is π. We have

investigated this regime extensively and aimed at plotting numerical kinetic relations, for the

schemes introduced in this paper. Let us consider the Riemann data

r(x, 0) =

⎧⎨
⎩

rl, x < 0.25,

0.6rl, otherwise,
θ(x, 0) =

⎧⎨
⎩

0, x < 0.25,

π, otherwise,
(4.3)

where rl is regarded as a free parameter and, by construction, the difference between the two

initial angles is π.

Numerical Test 3 Consider (3.1) with the initial data (4.3) and the parameter value

rl = 4. We compute with all the entropy conservative schemes (3.6) and show the computed

radius in Figure 4.
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(a) ε = Δx, α = 0 (b) ε = Δx, α = 2.0

Fig.4 Radius r for Test 3 at time t = 0.1 and 800 mesh points.

The parameters are taken to be ε = Δx and two different Hall coefficients are tested, i.e.,

α = 0.0 and α = 2.0. Since the initial jump is large, one expects oscillations behind the shocks.

Figure 4 shows that the second-order EC2 scheme computes a classical solution consisting of a

classical shock followed by a rarefaction wave. However, the higher-order schemes approximate

a solution consisting of a nonclassical shock and a fast shock. Note that the approximation

improves if we increase the order of the scheme. This is quantified by observing the intermediate

state and the shock speed. Furthermore, there is little qualitative difference between the purely

diffusive case (α = 0) and the large dispersion case (α = 2). The large dispersion leads to

even smaller values of the intermediate state and hence larger speeds for the nonclassical shock.

There is a marked difference between the classical and the nonclassical regimes, and comparing

Figures 1 and 4 illustrates that difference quite clearly.

Comparison between centered finite differences (3.3) and entropy conservative

fluxes (3.6) There are minor differences between the standard FD and the entropy conser-

vative EC schemes in either the classical regime or the pseudo nonclassical regime. However,

there are some noticeable differences between these two schemes in the nonclassical regime. This

difference is apparent when initial data with large jumps are considered and strong nonclassical

shocks are generated, as we now show.

Numerical Test 4 Now, we take rl = 8 in (4.3), and the coefficients are ε = Δx and
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α = 0. We compute with the schemes FD6 and EC6, on a mesh with 4000 mesh points, until

the time t = 0.05, and we plot the computed radius in Figure 5.

Hence, both schemes approximate a nonclassical shock and a fast shock. The main differ-

ences lie in the fact that the results with the EC6 scheme exhibit a larger intermediate state.

High frequency oscillations are clearly observed with the scheme FD6, around the intermedi-

ate state. This makes it very difficult to ascertain the exact value of the intermediate state

computed by the FD6 scheme.
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Fig.5 Radius with the EC6 and FD6 schemes for Test 4 with ε = Δx, α = 0

and 4000 mesh points.

Numerical kinetic functions We arrive at the main contribution of the present paper

and compute numerical kinetic relations that characterize the dynamics of nonclassical shocks

in (2.3). As observed in [16, 28], the task of computing numerical kinetic relations is quite

delicate. A large number of numerical experiments need to be performed and a large set of

parameter values have to be considered.

We consider different initial data in the nonclassical regime and compute the intermediate

state numerically. This allows us to compute the shock speed and the entropy dissipation

(2.10) across the nonclassical shock. For very weak nonclassical shocks, the intermediate state

lies close to the initial states and it is difficult to determine it exactly. When the nonclassical

shock is strong, there are high frequency and large amplitude oscillations around the shocks.

These oscillations (see Figure 5) obscure the intermediate state. Hence, it is almost impossible

to obtain kinetic relations with the FD schemes, at least for strong nonclassical shocks. We

will compute numerical kinetic relations with the EC schemes.

The diffusion coefficient is fixed as ε = Δx for all simulations. There were very minor

differences in results when other values of the diffusion coefficient were considered. The para-

meter rl in (4.3) takes all positive integers up to 20 as values. For a fixed rl, we experimented

with different mesh sizes and selected a mesh size with sufficient resolution. The intermediate

state was calculated and used to compute the shock speed and the entropy dissipation across

the nonclassical shock. We plot the intermediate state as a function of the initial rl in the

left-hand column of Figure 6. This is an indicator for the nonclassical behavior of the solutions

([28]). The right-hand column of Figure 6 shows the kinetic relation, more precisely, the scaled

entropy dissipation (2.10) (or driving force) as a function of the shock speed.

Three different values of the Hall coefficient α were used. For the pure diffusion case
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(α = 0), the results are shown in the top row of Figure 6. They demonstrate that the second-

order EC2 scheme approximates a classical solution for all values of rl. The classical solution is

a compound shock (see Figure 4) and the corresponding kinetic relation is trivial. On the other

hand, the high-order schemes approximate the nonclassical shock. The quality of approximation

improves with the order of the scheme. The kinetic relation is approximately monotone, even

for very strong shocks and very high shock speeds. In contrast to the results of [28], we are

able to obtain monotonicity of the numerical kinetic relations even for very strong shocks. A

possible reason might lie in the use of entropy conservative schemes.
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(c) ε = Δx, α = 1 (d) ε = Δx, α = 1
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Fig.6 Numerical kinetic relations for the EC schemes. Left column: Intermediate radius (vertical

axis) versus left-hand radius rl (horizontal axis), Right column: Scaled entropy dissipation (ϕ(s)

s2 ,

(2.10)) (vertical axis) versus shock speed s (horizontal axis). Top row: α = 0, Middle row: α = 1,

Bottom Row: α = 2.
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A moderate amount of dispersion, corresponding to α = 1.0 leads to some differences from

the pure diffusion case. Even the low-order EC2 approximates a nonclassical shock in this case.

However, the nonclassical shock approximated by the EC2 scheme exhibit very high-frequency

oscillations. These oscillations increase considerably when stronger shocks are considered. The

EC2 scheme can no longer be used to compute the kinetic relation when this happens. This

breakdown is represented with a broken curve, and similar behavior is noticed for the EC4

scheme. On the other hand, the even higher order EC6, EC8 and EC10 schemes approximate

the nonclassical shock quite well. The numerical kinetic relation continues to be monotone,

even for very large shock speeds.

Increasing the dispersion and considering now α = 2, we are led to an equally interesting

outcome. The low-order EC2 and EC4 schemes approximate the nonclassical shock initially,

but break down due to large oscillations when the shock strength is increased. Also, an “initial”

layer appears in the numerical kinetic functions for the high-order EC schemes. The kinetic

function is initially oscillatory but recovers monotonicity when the shock speed is increased.

The oscillations in the kinetic relation for small shocks might just have to do with the failure to

obtain the correct values of the intermediate state for very weak shocks. Dispersion influences

the quality of numerical kinetic relations considerably.

In the absence of explicit formulas for calculating the intermediate state or the entropy

dissipation, it is difficult to establish the convergence of the numerical kinetic functions shown

in Figure 6 as the order of the schemes is increased. The evidence presented in the figure

does not appear to be conclusive. Consequently, we would like to investigate the experimental

convergence of the numerical kinetic functions.
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Fig.7 Relative error (4.4) (vertical axis) versus rl (horizontal axis)

with the EC schemes for α = 1.

Let rl denote the left-hand value of the radius in the Riemann problem (4.3) and rm
l (d)

denote the intermediate radius computed with the ECd scheme. In the absence of formulas for

computing the exact intermediate state, we assume that rm
l (10) is a good approximation for

the exact intermediate state and employ it as a reference solution. We denote

REd(rl) = 100
|rm

l (d) − rm
l (10)|

|rm
l (10)|

, (4.4)

as the relative error in the intermediate state for any given rl. The aim is to examine whether



1700 ACTA MATHEMATICA SCIENTIA Vol.29 Ser.B

REd decreases as d is increased and at what rate. The relative errors for each rl are computed

for α = 1.0 (moderate diffusion) and plotted against rl in Figure 7. Note the experimental

convergence as the order is increased. The results show that the EC8 scheme provides the best

approximation to the reference solution with the EC6 scheme leading to consistently greater

errors than the EC8 scheme. The EC2 and EC4 schemes are shown with broken curves as

these schemes cannot be used for very strong shocks on account of heavy oscillations. When

these schemes are stable, the EC4 scheme leads to greater errors than the EC6 scheme whereas

the EC2 scheme leads to very large relative errors. The figure clearly indicates that the schemes

are converging to the reference intermediate state as the order is increased. Furthermore, the

convergence depends on the shock strength although there is a large region of the phase space

where the rate of convergence appears to be independent of the shock strength. Similar conver-

gence holds for the kinetic function as well as for different values of the dispersion parameter

α.

5 Concluding Remarks

The ideal MHD equations (2.1) are non strictly hyperbolic, and admit characteristic fields

that are neither genuinely non-linear nor linearly degenerate. Solutions to the MHD equations

may contain undercompressive nonclassical shocks, which depend upon regularization and are

obtained here as limits of a second-order diffusive-dispersive regularizations (2.7). The simplified

system (2.3) analyzed in the present paper is rotational invariant and models the effect of the

solar wind (as well as problems from non-linear elasticity). More precisely, solutions to this

system exhibit nonclassical shocks for co-planar initial data, and uniqueness of these solutions

is ensured only by imposing an additional admissibility criteria, i.e., a kinetic relation.

In this paper, we have investigated the wave structure of solutions to (2.3) numerically.

The equation (3.1) including small scale effects (resistivity, Hall effect) was discretized by a

class of high-order finite difference schemes. In particular, we have designed a novel class of

schemes based on entropy conservative flux discretizations and an analysis of the equivalent

equation. The second-order diffusive-dispersive terms were discretized by high-order central

finite differences.

The resulting schemes were tested on a wide variety of numerical experiments, and our

results allow us to distinguish between three distinct regimes. In the classical regime, only

classical shocks are observed. In a pseudo nonclassical regime, the initial data are very close

to co-planar data, and we observe that spurious nonclassical shocks are formed. Interestingly

enough, these shocks are eliminated by reducing the mesh size (or the magnitude of the regu-

larization coefficient) and the solution converges to the classical solution in the limit. However,

this convergence is very slow. These observations are consistent with the results of [15, 41]

which did not include the (dispersive) Hall effect.

Last but not least, the most interesting regime is when the data are precisely co-planar,

and the solutions do include nonclassical shocks. We have determined numerically kinetic rela-

tions for different choices of dispersion coefficients. We observed that standard finite difference

schemes led to unacceptably large oscillations for strong shocks. High-order accurate, entropy

conservative schemes [27, 29, 38, 39] were found to provide good accuracy for the kinetic re-
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lations. On the other hand, lower order schemes are found to lead to non-monotone kinetic

relations and break down at strong shocks. The role of the dispersion associated with the Hall

effect was also discussed in detail.

Our results provide further support to the use of schemes with controled dissipation ad-

vocated in the series of papers [8, 9, 16, 24, 26–29] and based on combining an analysis of the

equivalent equations and entropy conservative flux discretizations. Indeed, our results suggest

that the proposed toolkit of equivalent equations, entropy conservative schemes, and numerical

kinetic relations should extend to the study of the full ideal MHD system (2.1).
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